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Supplementary Figure 1 DGKE mutations in 9 kindreds with aHUS. (a) Pedigree structures and Sanger sequence 
chromatograms from the 9 aHUS kindreds with DGKE mutations are shown. Affected subjects are denoted by filled symbols 
and arrows identify probands. Chromatograms show sequences indicated kindred members (subject # in parentheses) or 
control subjects. Above each chromatogram, the sequence of the encoded protein is shown in single letter code; intron 
sequences are shown in lower case font. The variants found in affected subjects are indicated by arrowheads. ex, exon; int, 
intron; IVS, intervening sequence; WT, wildtype. (b) Detailed view of the linkage peak for kindred 9. A maximum multipoint 
LOD score of 2.53 was observed at the chromosomal segment 17q21.31-q23.3. Genetic distances, in centiMorgan (cM), 
are based on deCODE map. DGKE position indicated by arrow. (c) Amino acid alignment of DGKE in multiple species in the 
segments including the missense mutations p.Arg63Pro and p.Arg273Pro seen in kindreds 2 and 9, respectively. Multiple 
alignments were performed with ClustalW2 (baseline settings). Accession codes used available in main text.
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Supplementary Figure 2 Characterization of the DGKE p.Trp322*–associated haplotype. (a) Principal component analysis 
(PCA) of subjects from kindred 1 (1-3 and 1-4) with homozygous DGKE p.Trp322* mutation. Tag SNPs from exome 
sequences of subjects homozygous for DGKE p.Trp322* were combined with HapMap SNP data and PCA was performed 
as described in Methods. The results demonstrate that these individuals (red crosses) strongly cluster with individuals of 
European ancestry. (b) Linkage disequilibrium near DGKE. Hedrick’s multi-allelic D’ for linkage disequilibrium for SNPs 
in CEU from HapMap Phase II data is shown (Hg18). The physical distance (Mb) and recombination rate (cM/Mb) from 
HapMap Phase II genetic map are indicated. Shown above are the minimum and maximum homozygous segments shared 
among 3 apparently unrelated aHUS subjects homozygous for DGKE p.Trp322*. Genotypes for SNPs across this interval 
in these 3 subjects are shown in Supplementary Table 5. The location of 4 SNPs from this table is indicated. Haplotypes 
from blocks of LD labeled 1, 2, and 3 are shown in panel (c). D’ between LD blocks 1 and 2 is 1, and between 1/2 and 3 is 
0.18. (c) Haplotype frequencies for LD blocks 1,2 and 3. DGKE is in block 2 (arrow). Each row shows haplotypes in the CEU 
population with its frequency from HapMap CEU subjects. Four tag SNPs were genotyped in both blocks 1 and 2. Each tag 
SNP is identified by a number in bold located above the LD block, which corresponds to one row in Supplementary Table 
5. The base indicated above each tag SNP indicates the allele found on the shared haplotype; these alleles are highlighted 
with a gray box in each haplotype on which they occur (“-” indicates tag SNPs that were not genotyped). The combined 
frequencies of all haplotypes containing all 4 shared alleles in each block are highlighted in yellow. The shared haplotype 
harboring the DGKE p.Trp322* mutation is not found among HapMap chromosomes. Since the sum of all possible CEU 
haplotypes frequencies is ~99.9% for each LD block (black box), the frequency of the patients’ haplotype is at most 0.1% in 
the CEU cohort (yellow box). A third LD block from the shared interval (labeled “3”) is shown in the box, illustrating that the 
shared haplotype in this segment is common in CEU.
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Supplementary Figure 3 Estimation of the mutation age for DGKE p.Trp322*. (a) Distribution of probable mutation ages 
from DMLE+2.3 is shown as population growth rate (PGR) and proportion of sampled chromosomes (PSC) are varied 
across most likely estimates. The result from the best estimate of these parameters is indicated by the red box. The mean 
mutation age is also indicated on each graph, along with the calculated 95% confidence interval (in parentheses). (b) This 
panel overlays the 95% confidence interval data from in a for PGRs of 0.10 and 0.15 and various PSC values with that of 
the 95% confidence interval for the estimated mutation age obtained with ESTIAGE software.
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Supplementary Figure 4 Location of the heterozygous DGKE variants with minor allele frequencies < 1% observed 
in unaffected European-American. (a-b) Schematic representation of DGKE showing the positions of all heterozygous 
mutations found in 8,475 control exomes from subjects of European (a) or African-American (b) descent relative to the 
cDNA structure and known functional domains. There is a single subject harboring homozygous variant DGKE p.Pro12Leu 
(underlined). For variants seen more than once, the number of subjects observed is indicated by the numbers in subscript. 
All other variants were unique. HD, hydrophobic domain; C1, C1 domain. (c) Amino acid sequence alignment of the segment 
of DGKE including missense variant p.Pro12Leu that is homozygous in one control subject. Multiple alignments were 
performed with ClustalW2 (baseline settings). Accession codes used available in main text.
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Supplementary Figure 5  HUS relapse while on eculizumab (anti-C5) therapy. Clinical values are shown for aHUS patient 
6-3 over an 11-week period encompassing two HUS relapses, the second occurring during treatment eculizumab with 
therapeutic inhibition of complement cascade (CH50 < 15%). Values for CH50, platelet count, LDH, hemoglobin, creatinine 
and proteinuria are shown. The x-axis shows time, in weeks, relative to initiation of eculizumab treatment. The shaded 
gray area represents the eculizumab treatment period, with the timing of eculizumab infusions shown by black arrows. 
Gray arrowheads show the timing of plasma exchange therapy. The red arrows within the hemoglobin panel illustrate the 
timing of blood transfusions. Horizontal dashed lines show the lower limit of normal for platelets and hemoglobin and the 
upper limit for LDH and creatinine specific for age (1-2 year) and gender (female). For CH50 the dashed line denotes the 
therapeutic goal of CH50 < 15% normal. Before the transfusion during week 4, the absolute reticulocyte count was low, 
22,000/mm3 (normal range for non-anemic patients is 25,000-85,000/mm3, accounting for the gradual hemoglobin decrease 
noted between week 0 and 4. The asterisk shows the onset of an influenza infection (top), confirmed by PCR, just before 
the HUS recurrence during week 4. At that time there was a rapid reduction in platelet count, an increase in proteinuria, 
creatinine, LDH and an increased rate of reduction of hemoglobin level after transfusion. These findings are indicative of 
aHUS relapse. CH50, total hemolytic complement activity; LDH, lactate dehydrogenase; PCR, polymerase chain reaction.
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Supplementary Figure 6  Mouse platelets express high levels of DGKE protein that do not change with age. (a) Western 
blot shows that DGKE protein is present in both the cytoplasmic and membrane fractions of unstimulated platelets extracted 
from wild type C57/BL6 adult mice (50 micrograms of proteins were loaded in each lane). It also shows expression of 
β-tubulin and Na,K-ATPase, which are used both as loading controls and as controls for the efficiency of the subcellular 
fractionation: β-tubulin is enriched in the cytoplasm while Na,K-ATPase is enriched in the membrane fraction. (b) Western 
blot shows that DGKE protein is present in lysate of unstimulated platelets extracted from 8-week- and 18-week-old wild 
type C57/BL6 mice (50 micrograms of proteins were loaded in each lane). It also shows expression of β-tubulin, which is 
used as a loading control. 
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Supplementary Figure 7. Additional images for DGKE staining of normal and DGKE-mutant human kidneys.  (a) Kidney 
specimen from aHUS patient 2-7, stained with polyclonal rabbit anti-DGKE antibody (Novus) and anti-rabbit-HRP, DAB 
reaction stopped after 30 min (DAB and hematoxylin). This long exposure shows slight staining in podocyte, consistent 
with incomplete degradation of the DGKE allele harboring a missense mutation in this patient. (b) Kidney of normal subject 
stained with rabbit isotype antibody as primary antibody followed by secondary antibody, DAB reaction stopped after 5 
min (DAB and hematoxylin). Result shows no staining in absence of DGKE antibodies. (c) Kidney from aHUS patient 2-7, 
stained with monoclonal mouse anti-CD34 antibody (Dako) followed by secondary antibody, DAB reaction stopped after 5 
min (DAB and hematoxylin). The pattern and intensity of the CD34 staining in the patient glomeruli is normal and robust, 
indicating that the absence of DGKE staining is not explained by poor tissue preservation. (d) Normal kidney (different 
subject than shown above and in Fig. 4) stained with monoclonal mouse anti-DGKE antibody (R&D) followed by secondary 
antibody, DAB reaction stopped after 15 min (DAB and hematoxylin). Examples of DGKE-positive endothelial cells and 
podocytes are indicated by green arrows and pink arrowheads, respectively. (e) Normal kidney stained with secondary 
antibody alone, DAB reaction stopped after 15 min (DAB and hematoxylin). No staining is seen. Scale bars, 50 μm for a-e. 
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Supplementary Figure 8 Co-localization of DGKE and WT1 in rat glomeruli.  Three representative examples of rat 
glomeruli stained with monoclonal mouse anti-DGKE (from R&D, shown in red) and polyclonal rabbit anti-WT1 (in green; 
from Santa Cruz) antibodies are shown. Cells that stain for WT1, a podocyte marker, also stain for  DGKE. A substantial 
number that stain for DGKE but not WT1 are observed; per morphologic findings with immunohistochemistry in Fig. 4 and 
Supplementary Fig. 7, many of these are endothelial cells. Staining with fluorescent-labeled secondary antibodies was 
consistently negative (data not shown). Scale bars, 20 μm for panels 1-3.
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Supplementary Figure 9 DGKE regulates levels of AADAG in the phosphatidylinositol cycle. (a) Extracellular signals activate 
phospholipase C (PLC), which produces arachidonic acid-containing diacylglycerol (AADAG) from phosphatidylinositol 
4,5-bisphosphate (PIP2). AADAG signaling promotes protein kinase C (PKC) activity. AADAG signaling is terminated by their 
phosphorylation by DGKE to the corresponding phosphatidic acid (PA). PA is an obligatory intermediate in recycling AADAGs 
to PIP2 via the phosphatidylinositol (PI) cycle (see panel c, below). (b) Structure of the most common AADAG containing 
arachidonic acid (AA) and stearic acid (SA) is shown. The site of PLC cleavage is indicated. (c) PI cycle regenerates PI 
from PA. PLC is regulated by activity of various G-protein coupled receptor (GPCR), receptor tyrosine kinase (RTK) and 
mechanical stimuli.  AADAG is phosphorylated to PA by DGKs such as DGKE. The remainder of the cycle that ultimately 
regenerates PI takes place in the endoplasmic reticulum.  ADP and ATP, adenosine di- and tri-phosphate; Ins, myo-inositol; 
IP3, inositol 1,4,5-triphosphate; PIP, phosphatidylinositol 4-phosphate.
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Supplementary Figure 10 DGKE potential roles in modulating PKC activity in endothelial cells and platelets. (a-b) 
Various physiological stimuli (italics) and ligands that activate PKC via their cognate GPCRs or RTKs are presented, 
and the consequences of PKC activation in endothelium (a) and platelets (b) are shown. (a) PLC activity is dramatically 
increased in response to membrane signaling via GPCR (receptors for ATP1, angiotensin II2, histamine3, and thrombin3) 
and mechanical stimuli (sheer stress4). Inset shows that activation of PKC results in increased production of various pro- 
and anti-thrombotic factors (arrows) and decreased VEGFR2 trafficking to the plasma membrane (flat-headed arrow), as 
described in main text. (b) A similar increase in PLC activity is observed in response to membrane signaling via GPCR 
(receptors for thrombin5) and RTKs (CRP6, collagen7). Inset shows that activation of PKC results in increase granule and TA2 
secretion. AADAG, arachidonic acid-containing diacylglycerol; ATP, adenosine triphosphate; CRP, collagen-related peptide; 
DGKE, diacylglycerol kinase epsilon; GCPRs, G-protein coupled receptor; PA, phosphatidic acid; PAF, platelet-activating 
factor; PAI-1, plasminogen activator inhibitor-1; PIP2, phosphatidylinositol 4,5-bisphosphate; PKC, protein kinase C; PLC, 
phospholipase C; RTKs, receptor tyrosine kinase; TA2, thromboxane A2; TF, tissue factor; tPA, tissue plasminogen inhibitor, 
VEGFR2, vascular endothelial growth factor receptor-2; vWF, von Willebrand factor. 

References for Supplementary Figure 10:
1. Wilkinson, G. F., et al. Brit. J. Pharmacol. 108, 689-693 (1993).
2. Pueyo, M. E., et al. Brit. J. Pharmacol. 118, 79-84 (2012).
3. Brock, T. A. & Capasso, E. A. J. Cell. Physiol. 136, 54-62 (1988).
4. Bhagyalakshmi, A., et al. J. Vasc. Res. 29, 443-449 (1992).
5. Offermans, S. Circ. Res. 15, 1293-1304 (2006).
6. Asselin, J, et al. Blood. 89, 1235-1242 (1997).
7. Keely, P. J. & Parise, L. V. J. Biol. Chem. 271, 26668–26676 (1996).
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Supplementary Table 3 Summary of sequencing metrics for the exome capture of 
the affected siblings from kindreds 1 and 2

Parameters Kindred 1 Kindred 2
1-3 1-4 2-5 2-7

Number of reads (million) 142.4 103.9 111.7 104.7
Median coverage (×) 135 98 104 98
Mean coverage (×) 157.1 115.9 122.8 115.6
Bases mapping to the genome (%) 90.2 89.7 90.8 90.8
Bases mapping to the exome (%) 73.3 74.5 72.5 72.9
Bases covered at least 4× (%) 97.7 97.5 97.7 97.6
Bases covered at least 8× (%) 96.9 96.5 96.8 96.6
Mean error rate (%) 0.67 0.71 0.51 0.52
% of PCR duplicate 5.59 4.41 5.70 5.31
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Supplementary Table 4 Impact of filters applied to raw data to rare single nucleotide variants or insertion/deletions 
shared among sibling (data from chromosomes X and Y not included)*

Filters
Kindred 1 Kindred 2

Heterozygous Homozygous Heterozygous Homozygous
1-3 1-4 1-3 1-4 2-5 2-7 2-5 2-7

Greater than quality score thresholdsa 21,906 21,323 13,170 12,918 28,520 28,417 13,869 13,608
Not part of a segmental duplication > 1,000 bp 19,892 19,419 12,326 12,094 26,156 26,009 12,959 12,753
Protein altering variants (including indels) 5,010 5,004 3,151 3,072 6,460 6,465 3,283 3,227
MAF thresholds in Yale/NHLBI exomes 
or 1000 Genomesb 44 47 4 1 237 233 2 5

Damaging and conserved missense variants 33 38 4 1 181 185 2 4
Variants shared between affected siblings 16 1c 91 1e

Number compound heterozygous variants 0 N/A 1d N/A
Variants in same gene between families 1

MAF, minor allele frequency.
*dbSNP database was not used as a filter. aQuality score thresholds: heterozygous SNV calls QS>100, homozygous SNV 
calls QS>60. bMinor allele frequency cut-off is 0.1% for heterozygous variants and 1% for homozygous variants. cHo-
mozygous DGKE  pTRP.322*. dCompound heterozigosity for DGKE p.Arg63Pro and DGKE p.Val163Serfs*3. eOR6Y1 
(olfactory receptor, family 6, subfamily Y, member 1), p.Pro68*  (rs149371181).
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Supplementary Table 5 Mapping the boundaries of the homozygous segments and length of the shared haplotype segment for 3 sub-
jects with homozygous DGKE p.Trp322* using genotyping of common variants

SNP # on
Suppl. Fig. 2

SNP 
rs #*

Position on chr 17 (base) Position on 
chr 17 (cM)c

Distance (kb) 
from W322*

HW 
p-valuea

HapMap 
MAFa

Genotype data ford 
Hg18a Hg19b 1-3 4-3 8-3

- rs6503934 43,368,649 46,013,650 68.602279e -8,912.5 0.90 0.41 ND ND T/C
- rs4793996 44,374,596 47,019,597 68.979469 -7,906.6 0.91 0.46 ND ND C/C
- rs12451482 45,075,097 47,720,098 70.070992e -7,206.0 1.00 0.50 ND ND T/T
- rs2586465 45,780,966 48,425,967 71.764626 -6,500.2 1.00 0.42 ND ND T/T
- rs7209022 46,993,753 49,638,754 73.369661 -5,287.4 0.45 0.39 ND ND A/A
- rs1553368 49,004,170 51,649,171 74.742026 -3,277.0 0.98 0.45 ND ND G/G
- rs12603570 50,954,716 53,599,717 76.841411 -1,326.4 0.50 0.48 ND ND C/C
- rs8069322 51,805,133 54,450,134 78.065219e -476.0 0.13 0.25 A/A G/A G/G
- rs10852985 51,889,633 54,534,634 78.084464 -391.5 0.40 0.24 A/A G/A G/G
- rs1545261 51,935,771 54,580,772 78.123342 -345.4 0.84 0.11 C/C C/C C/C
- rs12450049 51,951,225 54,596,226 78.124427 -0.330 0.69 0.33 G/A G/A A/A
- rs103395 52,051,231 54,696,232 78.463311 -230.0 1.0 0.18 A/A A/A A/A
- rs7208197 52,056,582 54,701,583 78.465832 -224.6 1 0.085 G/G G/G G/G
- rs4605230 52,059,828 54,704,829 78.469067 -221.3 0.47 0.37 T/T A/A T/T
- rs12325830 52,064,643 54,709,644 78.470051 -216.5 0.04 0.45 T/T C/C T/T
- rs227665 52,168,750 54,813,751 78.734307 -112.3 0.13 0.30 A/A A/A A/A
- rs227662 52,170,563 54,815,564 78.745934 -110.6 1 0.18 C/C C/C C/C
- rs8069500 52,173,224 54,818,225 78.7538 -107.9 1 0.39 C/C C/C C/C
- rs3914804 52,175,260 54,820,261 78.761973 -105.9 0.71 0.30 A/A A/A A/A

140 rs17822403 52,224,472 54,869,473 79.037843 -56.7 1 0.17 T/T T/T T/T
144 rs3853823 52,231,863 54,876,864 79.039351 -49.3 0.06 0.19 A/A A/A A/A
156 rs2235092 52,266,928 54,911,929 79.043373e -14.2 0.35 0.35 G/G G/G G/G
157 rs7225724 52,267,736 54,912,737 79.044395 -13.4 1.00 0.11 G/G G/G G/G
158 rs6503772 52,271,688 54,916,689 79.045028 -9.4 1.00 0.45 A/A A/A A/A

- p.Trp322X 52,281,133 54,926,134 - - - - - - -
162 rs4794670 52,282,828 54,927,829 79.045647 +1.7 0.16 0.26 A/A A/A A/A
164 rs11651692 52,293,014 54,938,015 79.046361 +11.9 0.34 0.30 G/G G/G G/G
168 rs7209070 52,301,193 54,946,194 79.047342 +20.1 0.58 0.29 C/C C/C C/C

- rs2525997 52,326,240 54,971,241 79.25804 +45.1 1 0.107 C/C C/C C/C
- rs205499 52,327,400 54,972,401 79.271336 +46.3 0.62 0.158 G/G G/G G/G
- rs205498 52,333,793 54,978,794 79.322774 +52.7 0.34 0.25 A/A A/A A/A

215 rs2301823 52,393,489 55,038,490 79.361959e +112.4 0.9117 0.474 A/A A/A A/A
219 rs7221286 52,409,153 55,054,154 79.363312e +128.0 0.5471 0.282 C/C C/C C/C
225 rs12453004 52,420,529 55,065,530 79.365252 +139.4 0.40 0.60 G/G G/G G/G
229 rs17833633 52,431,759 55,076,760 79.370538 +150.6 0.29 0.48 C/C C/C C/C

- rs917927 52,505,204 55,150,205 79.818432 +224.1 1.0 0.45 G/G T/T T/T
- rs1007462 52,558,314 55,203,315 79.903638 +277.2 0.39 0.46 T/T C/C C/C
- rs4794707 52,595,599 55,240,600 79.944243 +314.4 0.67 0.34 A/A C/C C/C
- rs3744089 53,057,256 55,702,257 81.424977 +776.0 1 0.21 T/T C/C T/T
- rs6503825 53,072,744 55,717,745 81.452585 +791.6 0.90 0.50 C/T T/T C/T
- rs10083864 53,192,909 55,837,910 81.658245 +911.8 1 0.46 C/T C/C C/C
- rs2233906 53,440,438 56,085,439 82.403671 +1159.3 0.40 0.15 T/T C/C T/T
- rs3863502 53,588,498 56,233,499 82.566118 +1307.4 0.86 0.44 C/C C/C C/T
- rs60994383 53,602,100 56,247,101 82.647271e +1320.9 N/A N/A C/A C/A C/C

*All variants were identified using Haploview 4.2 (version 3; release R2; analysis panel CEU). aThese data were extracted directly 
from the Haploview output files (“HapMap download” option). aThe SNP coordinates from Haploview 4.2 were converted from Hg18 
to Hg19 using UCSC Genome Browser LiftOver function. cThe positions in centimorgans (cM) were obtained from HapMap Phase II 
genetic map (Hg19). dWe report genotyping data at each locus relative to the positive strand, and major alleles (frequency > 50%) are 
in bold font.  eSince these SNPs are not part of HapMap Phase II, the closest HapMap Phase II SNP position is indicated. The bound-
aries of the shared segment is indicated by the lines. The extent of each patients’ homozygous segment is indicated in shaded gray.


